Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins.

Identifieur interne : 000A90 ( Main/Exploration ); précédent : 000A89; suivant : 000A91

Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins.

Auteurs : Lionel Tarrago [France] ; Edith Laugier ; Mirko Zaffagnini ; Christophe Marchand ; Pierre Le Maréchal ; Nicolas Rouhier ; Stéphane D. Lemaire ; Pascal Rey

Source :

RBID : pubmed:19457862

Descripteurs français

English descriptors

Abstract

Methionine oxidation leads to the formation of S- and R-diastereomers of methionine sulfoxide (MetSO), which are reduced back to methionine by methionine sulfoxide reductases (MSRs) A and B, respectively. MSRBs are classified in two groups depending on the conservation of one or two redox-active Cys; 2-Cys MSRBs possess a catalytic Cys-reducing MetSO and a resolving Cys, allowing regeneration by thioredoxins. The second type, 1-Cys MSRBs, possess only the catalytic Cys. The biochemical mechanisms involved in activity regeneration of 1-Cys MSRBs remain largely elusive. In the present work we used recombinant plastidial Arabidopsis thaliana MSRB1 and MSRB2 as models for 1-Cys and 2-Cys MSRBs, respectively, to delineate the Trx- and glutaredoxin-dependent reduction mechanisms. Activity assays carried out using a series of cysteine mutants and various reductants combined with measurements of free thiols under distinct oxidation conditions and mass spectrometry experiments show that the 2-Cys MSRB2 is reduced by Trx through a dithiol-disulfide exchange involving both redox-active Cys of the two partners. Regarding 1-Cys MSRB1, oxidation of the enzyme after substrate reduction leads to the formation of a stable sulfenic acid on the catalytic Cys, which is subsequently glutathionylated. The deglutathionylation of MSRB1 is achieved by both mono- and dithiol glutaredoxins and involves only their N-terminal conserved catalytic Cys. This study proposes a detailed mechanism of the regeneration of 1-Cys MSRB activity by glutaredoxins, which likely constitute physiological reductants for this type of MSR.

DOI: 10.1074/jbc.M109.015487
PubMed: 19457862
PubMed Central: PMC2707211


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins.</title>
<author>
<name sortKey="Tarrago, Lionel" sort="Tarrago, Lionel" uniqKey="Tarrago L" first="Lionel" last="Tarrago">Lionel Tarrago</name>
<affiliation wicri:level="3">
<nlm:affiliation>Commissariat à l'Energie Atomique (Cadarache, France), Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Commissariat à l'Energie Atomique (Cadarache, France), Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Saint-Paul-lez-Durance</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Laugier, Edith" sort="Laugier, Edith" uniqKey="Laugier E" first="Edith" last="Laugier">Edith Laugier</name>
</author>
<author>
<name sortKey="Zaffagnini, Mirko" sort="Zaffagnini, Mirko" uniqKey="Zaffagnini M" first="Mirko" last="Zaffagnini">Mirko Zaffagnini</name>
</author>
<author>
<name sortKey="Marchand, Christophe" sort="Marchand, Christophe" uniqKey="Marchand C" first="Christophe" last="Marchand">Christophe Marchand</name>
</author>
<author>
<name sortKey="Le Marechal, Pierre" sort="Le Marechal, Pierre" uniqKey="Le Marechal P" first="Pierre" last="Le Maréchal">Pierre Le Maréchal</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
<author>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stéphane D" last="Lemaire">Stéphane D. Lemaire</name>
</author>
<author>
<name sortKey="Rey, Pascal" sort="Rey, Pascal" uniqKey="Rey P" first="Pascal" last="Rey">Pascal Rey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19457862</idno>
<idno type="pmid">19457862</idno>
<idno type="doi">10.1074/jbc.M109.015487</idno>
<idno type="pmc">PMC2707211</idno>
<idno type="wicri:Area/Main/Corpus">000B03</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B03</idno>
<idno type="wicri:Area/Main/Curation">000B03</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B03</idno>
<idno type="wicri:Area/Main/Exploration">000B03</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins.</title>
<author>
<name sortKey="Tarrago, Lionel" sort="Tarrago, Lionel" uniqKey="Tarrago L" first="Lionel" last="Tarrago">Lionel Tarrago</name>
<affiliation wicri:level="3">
<nlm:affiliation>Commissariat à l'Energie Atomique (Cadarache, France), Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Commissariat à l'Energie Atomique (Cadarache, France), Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Saint-Paul-lez-Durance</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Laugier, Edith" sort="Laugier, Edith" uniqKey="Laugier E" first="Edith" last="Laugier">Edith Laugier</name>
</author>
<author>
<name sortKey="Zaffagnini, Mirko" sort="Zaffagnini, Mirko" uniqKey="Zaffagnini M" first="Mirko" last="Zaffagnini">Mirko Zaffagnini</name>
</author>
<author>
<name sortKey="Marchand, Christophe" sort="Marchand, Christophe" uniqKey="Marchand C" first="Christophe" last="Marchand">Christophe Marchand</name>
</author>
<author>
<name sortKey="Le Marechal, Pierre" sort="Le Marechal, Pierre" uniqKey="Le Marechal P" first="Pierre" last="Le Maréchal">Pierre Le Maréchal</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
<author>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stéphane D" last="Lemaire">Stéphane D. Lemaire</name>
</author>
<author>
<name sortKey="Rey, Pascal" sort="Rey, Pascal" uniqKey="Rey P" first="Pascal" last="Rey">Pascal Rey</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (metabolism)</term>
<term>Catalysis (MeSH)</term>
<term>Cysteine (chemistry)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (chemistry)</term>
<term>Kinetics (MeSH)</term>
<term>Methionine Sulfoxide Reductases (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Plant Physiological Phenomena (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Regeneration (MeSH)</term>
<term>Sulfhydryl Compounds (chemistry)</term>
<term>Thioredoxins (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (métabolisme)</term>
<term>Catalyse (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Cystéine (composition chimique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (composition chimique)</term>
<term>Methionine Sulfoxide Reductases (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Phénomènes physiologiques des plantes (MeSH)</term>
<term>Régénération (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Thiols (composition chimique)</term>
<term>Thiorédoxines (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
<term>Glutathione</term>
<term>Oxidoreductases</term>
<term>Sulfhydryl Compounds</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cystéine</term>
<term>Glutathion</term>
<term>Oxidoreductases</term>
<term>Thiols</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>Kinetics</term>
<term>Methionine Sulfoxide Reductases</term>
<term>Models, Biological</term>
<term>Mutagenesis, Site-Directed</term>
<term>Mutation</term>
<term>Plant Physiological Phenomena</term>
<term>Protein Structure, Tertiary</term>
<term>Regeneration</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Catalyse</term>
<term>Cinétique</term>
<term>Methionine Sulfoxide Reductases</term>
<term>Modèles biologiques</term>
<term>Mutagenèse dirigée</term>
<term>Mutation</term>
<term>Phénomènes physiologiques des plantes</term>
<term>Régénération</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Methionine oxidation leads to the formation of S- and R-diastereomers of methionine sulfoxide (MetSO), which are reduced back to methionine by methionine sulfoxide reductases (MSRs) A and B, respectively. MSRBs are classified in two groups depending on the conservation of one or two redox-active Cys; 2-Cys MSRBs possess a catalytic Cys-reducing MetSO and a resolving Cys, allowing regeneration by thioredoxins. The second type, 1-Cys MSRBs, possess only the catalytic Cys. The biochemical mechanisms involved in activity regeneration of 1-Cys MSRBs remain largely elusive. In the present work we used recombinant plastidial Arabidopsis thaliana MSRB1 and MSRB2 as models for 1-Cys and 2-Cys MSRBs, respectively, to delineate the Trx- and glutaredoxin-dependent reduction mechanisms. Activity assays carried out using a series of cysteine mutants and various reductants combined with measurements of free thiols under distinct oxidation conditions and mass spectrometry experiments show that the 2-Cys MSRB2 is reduced by Trx through a dithiol-disulfide exchange involving both redox-active Cys of the two partners. Regarding 1-Cys MSRB1, oxidation of the enzyme after substrate reduction leads to the formation of a stable sulfenic acid on the catalytic Cys, which is subsequently glutathionylated. The deglutathionylation of MSRB1 is achieved by both mono- and dithiol glutaredoxins and involves only their N-terminal conserved catalytic Cys. This study proposes a detailed mechanism of the regeneration of 1-Cys MSRB activity by glutaredoxins, which likely constitute physiological reductants for this type of MSR.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19457862</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>09</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>284</Volume>
<Issue>28</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jul</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins.</ArticleTitle>
<Pagination>
<MedlinePgn>18963-71</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M109.015487</ELocationID>
<Abstract>
<AbstractText>Methionine oxidation leads to the formation of S- and R-diastereomers of methionine sulfoxide (MetSO), which are reduced back to methionine by methionine sulfoxide reductases (MSRs) A and B, respectively. MSRBs are classified in two groups depending on the conservation of one or two redox-active Cys; 2-Cys MSRBs possess a catalytic Cys-reducing MetSO and a resolving Cys, allowing regeneration by thioredoxins. The second type, 1-Cys MSRBs, possess only the catalytic Cys. The biochemical mechanisms involved in activity regeneration of 1-Cys MSRBs remain largely elusive. In the present work we used recombinant plastidial Arabidopsis thaliana MSRB1 and MSRB2 as models for 1-Cys and 2-Cys MSRBs, respectively, to delineate the Trx- and glutaredoxin-dependent reduction mechanisms. Activity assays carried out using a series of cysteine mutants and various reductants combined with measurements of free thiols under distinct oxidation conditions and mass spectrometry experiments show that the 2-Cys MSRB2 is reduced by Trx through a dithiol-disulfide exchange involving both redox-active Cys of the two partners. Regarding 1-Cys MSRB1, oxidation of the enzyme after substrate reduction leads to the formation of a stable sulfenic acid on the catalytic Cys, which is subsequently glutathionylated. The deglutathionylation of MSRB1 is achieved by both mono- and dithiol glutaredoxins and involves only their N-terminal conserved catalytic Cys. This study proposes a detailed mechanism of the regeneration of 1-Cys MSRB activity by glutaredoxins, which likely constitute physiological reductants for this type of MSR.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tarrago</LastName>
<ForeName>Lionel</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Commissariat à l'Energie Atomique (Cadarache, France), Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Laugier</LastName>
<ForeName>Edith</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zaffagnini</LastName>
<ForeName>Mirko</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Marchand</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Le Maréchal</LastName>
<ForeName>Pierre</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rouhier</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lemaire</LastName>
<ForeName>Stéphane D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rey</LastName>
<ForeName>Pascal</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>05</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.-</RegistryNumber>
<NameOfSubstance UI="D051150">Methionine Sulfoxide Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.11</RegistryNumber>
<NameOfSubstance UI="C027219">methionine sulfoxide reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051150" MajorTopicYN="N">Methionine Sulfoxide Reductases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018521" MajorTopicYN="N">Plant Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012038" MajorTopicYN="Y">Regeneration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19457862</ArticleId>
<ArticleId IdType="pii">M109.015487</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M109.015487</ArticleId>
<ArticleId IdType="pmc">PMC2707211</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):202-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 3;284(14):9299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35908-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10964927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 28;276(52):48915-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11677230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Jan 30;511(1-3):145-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11821065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 5;277(14):12016-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11812798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 19;277(16):13609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11832487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1417-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 4;277(40):37527-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12145281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Apr 8;42(13):3929-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12667084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 11;278(28):25745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 8;279(41):42462-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15280355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1977;47:111-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">927167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1981 Apr;78(4):2155-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7017726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Sep 29;31(38):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1390715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Jan 28;235(4):1357-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8308900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1996 Nov 1;335(1):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8914835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9585-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9275166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Jan;13(1):97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9680968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1999 Aug 15;273(1):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10452801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1959 May;82(1):70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13650640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(1):31-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15610347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 17;1703(2):93-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 May 31;44(21):7696-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15909984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):909-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Dec;33(Pt 6):1375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Dec;3(12):e375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jan 17;45(2):360-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16401067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8656-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16735467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 20;281(42):31184-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 Jan;274(1):212-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17140414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3367-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17135266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Sep 28;361(3):629-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17673175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Sep 15;43(6):883-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17697933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Sep 18;581(23):4371-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:143-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2008 Jun;275(11):2942-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18435761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Jul 4;371(3):490-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18452709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2008 May 31;25(3):332-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2008 Jun 15;474(2):266-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18302927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Provence-Alpes-Côte d'Azur</li>
</region>
<settlement>
<li>Saint-Paul-lez-Durance</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Laugier, Edith" sort="Laugier, Edith" uniqKey="Laugier E" first="Edith" last="Laugier">Edith Laugier</name>
<name sortKey="Le Marechal, Pierre" sort="Le Marechal, Pierre" uniqKey="Le Marechal P" first="Pierre" last="Le Maréchal">Pierre Le Maréchal</name>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stéphane D" last="Lemaire">Stéphane D. Lemaire</name>
<name sortKey="Marchand, Christophe" sort="Marchand, Christophe" uniqKey="Marchand C" first="Christophe" last="Marchand">Christophe Marchand</name>
<name sortKey="Rey, Pascal" sort="Rey, Pascal" uniqKey="Rey P" first="Pascal" last="Rey">Pascal Rey</name>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<name sortKey="Zaffagnini, Mirko" sort="Zaffagnini, Mirko" uniqKey="Zaffagnini M" first="Mirko" last="Zaffagnini">Mirko Zaffagnini</name>
</noCountry>
<country name="France">
<region name="Provence-Alpes-Côte d'Azur">
<name sortKey="Tarrago, Lionel" sort="Tarrago, Lionel" uniqKey="Tarrago L" first="Lionel" last="Tarrago">Lionel Tarrago</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A90 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A90 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19457862
   |texte=   Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19457862" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020